Speeding up batch printing on an Intermec PM43

We recently wrote a Fingerprint application for a large snack food manufacturer. The application prompts the user for the item number they want to print and the number of labels. After printing a sample label for approval, the program prints the requested quantity. There are four different label formats, and the data for the label is retreived from a .CSV look up file.

We issue a “PRINT FEED” command for each label; the labels are serialized so each one is unique.

Here’s a video of the labels printing:   Video

Notice that the printer pauses after each label. On our next release we implemented the command “OPTIMIZE “BATCH” ON” with each of the label formats. According to the manual, this command means that “The program execution will not wait for the printing of the label to be completed, but proceeds executing next label image into the other of the two image buffers as soon as possible.”

The effect was to greatly speed up label printing: Video_1

GS1 Application Identifiers

The stated goal of GS1 (formerly the UPC Code Council) is to “develop and maintains global standards for business communication”. Their most widely know standard is for barcode labels. Here’s a sample GS1 barcode:

A scanner reading this barcode will  output “[C101189010720001501719083110LM123”.  The symbology above is Code 128 which has 106 different symbol patterns in it’s character set, three different start characters, three subsets (A,B, and C), and four function characters (FNC1 to FNC4) that are not printable that are used for special functions.

All GS1 barcodes start with a Start C symbol followed by a Function 1 character; scanners are supposed to interpret this a “[C1”, which indicates to the receiving software that the code follows GS1 rules.

The three pairs of characters enclosed in parenthesis are Application Identifiers; they tell the receiving software what type of data follows. Note that the parentheses are in the human readable only, they are not in the bar code itself.

A full list of AIs can be found here, but in the above example:

01 – Identifies the following data as a GTIN (Global Trade Identification Number)

17 – indicates an expiration date (YYMMDD)

10 – is a lot number, which is variable length field.

Note that if a variable length field (or more precisely, if the FNC1 is required by the GS1 tables) is in front of another field, a separator character must be used to signal the end of the field. This character can be a FNC1 or and ASCII group separator character (Hex 1D).

GS1 barcodes can also be Datamatrix codes; they follow the same rules as Code 128 except that the first three characters output are “[d2” instead of the “[C1” for Code 128.

CK3B CK3X CK71 and CK75 batteries

These four hand held computers from Intermec, now Honeywell, have used similar batteries:

From left to right

318-046-031 – Compatible with all CK series computers

318-046-001 – Compatible with CK75, CK71, CK3X

318-034-003 – Compatible with CK3X, CK3B

318-034-001 – Compatible with CK3X, CK3B

Note that the current CK3 battery part number is 318-034-023 (replaces the last two above) and the current CK7X battery is 318-046-031.

There is a new battery for the cold storage CK75, part number 318-046-032.

Writing Fingerprint programs that run on the PM and PX series printers

I’m in the middle of a couple of these projects, so while the subject is fresh, I’ll note tips.

The PM series printer needs to have device names in lower case, and both the PX and PM series converts everything to upper case by default. The command to turn this off is SYSVAR(43)=1, so you can get the version of the printer and execute this command accordingly:

IF LEFT$(VERSION$(1),2) = “PM” THEN SYSVAR(43) = 1

The VERSION$(1) command returns the printer type: PM43, PX4, etc.

I’m converting a program that runs on a PX series to run on a PM. The users are used to pressing the “<” and “i” key to execute certain functions, but these keys are absent on the PM series. To get around this I copied the less than key image from the /usr/share/ui/images/fpapps folder on the PM43 and copied it into the /home/user/display folder and named it funckey_1.png. I then edited the image with Paint to create a custom “i” key and saved it as funkey_5.png.

Next, I executed the display key function if the printer was a PM series:


When the code executes, the display looks like this:

The less that and I key map to the F1 and F5 keys, but the display is friendly for the user. Note that the DISPLAY KEY2,0 through 4,0 hides the F2, F3, and F4 keys from the screen.

As I mentioned earlier, the PM series needs device names in lower case, so UART1: becomes uart1: and CONSOLE: becomes console:

Make all of your file names upper case and specify the path to make them compatible with both printers, so it’s /c/MYFILE.TXT.

We use the sound command to put timed delays into our code; a typical command: SOUND 20000,100. This doesn’t work with the PM series, it’s sound command is limited to 4 digits, so use SOUND 0,100 instead, This will run on both printers.

Intermec published a nice document on migrating to the PM series, you can find it here.

If you have images to print on your labels be aware the the DIR command works differently in the PM and PX series. The PM can rotate images in all four directions, the PX only by 180 degrees. The best practice is to use DIR1 on all images on your label and rotate the images themselves with an editor(such as IRFAN) as needed so you images will print out the same on both printers.


One last item that has nothing to do with this subject, but it is a Fingerprint topic. I was doing a program on a PC43 series printer using small cryo labels .5 inches long. After the label printed the label gap came to rest directly over the label sensor and the printer returned an out of media status when I queried it with ?PRSTAT.  No start/stop or label length commands could fix this so I used a PRSTAT(8) command instead and waited on a “next label not found error”,  a 132 to get around this issue. Saved a project.

How to print barcode labels from your program

Sometimes you need to print labels from a program you are writing. Here’s a few tricks to make that job easier.

You can develop a label format in its native language of IPL, ZPL, Direct Protocol, etc (there’s a bunch of them) but an easier method is to use a design tool, which are available for free from printer manufacturers and capture its output.  For Intermec printers you can download Bartender UltraLite from the Honeywell web site here. You’ll need to sign up to get an account and you’ll have to use their download tool, which works with Windows 7 but not 10.

Next, download the appropriate printer driver for your target printer. You can get these from the same Honeywell site or from Seagull Scientific.

Once you have the software and driver installed, use Bartender to design your label:

Print your label to check that it looks the way you want and you can then print your template to disk for later inclusion into your code.

Find the printer driver and open the Printer Properties page. Click on the Port Tab and change the Port to “File”:

Now print your label from Bartender again. A dialog box will pop up asking you for a file name and location to save the output. Once this is done you can open the file with a text editor and look at the data. The label above created this output file:

<xpml><page quantity=’0′ pitch=’50.8 mm’></xpml>’Seagull:2.1:DP
SYSVAR(48) = 0
OPEN “tmp:setup.sys” FOR OUTPUT AS #1
SETUP “tmp:setup.sys”
KILL “tmp:setup.sys”
<xpml></page></xpml><xpml><page quantity=’1′ pitch=’50.8 mm’></xpml>CLL
BARSET “CODE128C”,2,1,6,203
PB “12345678”
PP474,495:NASC 1252
FT “Dutch 801 Roman BT”
PT “12345678”
PP325,297:PT “Sample Text”

You can get rid of of the overhead and just keep the portion that actually prints the label:

BARSET “CODE128C”,2,1,6,203
PB “12345678”
PP474,495:NASC 1252
FT “Dutch 801 Roman BT”
PT “12345678”
PP325,297:PT “Sample Text”

You can replace the two fixed text fields “12345678” and “Sample Text” with variable names and include it in your code.

You can test print the small file above by making an FTP connection from a command line to the printer and use PUT to sendthe label format to location PR1. As an example:

One label printer after the PUT command. Hope this helps.

How to connect an Intermec printer to a PLC

One thing I can say with confidence about Intermec printers is that they are the most versatile on the market. Intermec printers can run user developed programs and they have a wide variety of add on options.

I recently did a job for a medical manufacturer who wanted to control label printing from a Programmable Logic Controller (PLC).  They use Bartender to send the label data and needed the printer to print one label each time the PLC fires a relay.

Intermec offers an industrial I/O board for their PX and PM series of printers (1-971143-800 and 270-192-001, respectively) that have 8 sense inputs, 8 optocoupler out ports, and 4 relay ports. The manual is here.

I used a Fingerprint program and an I/O board to connect their PX6 printers to a PLC.

When the program starts it turns on a relay that is used as a “ready” signal to the PLC indicating that it’s ready for a new job.

A fingerprint program then receives label data from Bartender on the Centronics port, filters out unneeded data and writes the label to disk.  The program then turns the  “ready” relay off, indicating that to the PLC that a job is running.

If an error occurs (out of labels, ribbons, etc.) another relay is closed to flag the PLC of the error condition and the specific error is displayed by the printer for the user’s intervention.

The program monitors one of the sense input ports and prints one label when it detects voltage on that pair (10V to 40V). The setup during testing looked like this:

The industrial I/O board uses a 44 pin high density connector for the inputs and relay pairs. We used the red pair of wires and a 24 volt power supply to simulate the PLC output, the black pair was “ready”,  and the white pair was the error indicator. I used a serial port to connect to Bartender because I didn’t have a Centronics port available. We could have used any port, Ethernet, USB, serial, or parallel to receive the label data from Bartender.


What’s the warranty on Honeywell barcode equipment?

It’s not so easy to find, but the official list is here.

In general, with few exceptions:

Hand held computers: 1 year

Tethered scanners: 5 years

Battery operated scanner: 3 years

Presentation and hands free scanners: 2 years

Printers: 1 year

Printheads: One year or one million lineal inches, whichever comes first (note that you get free printhead replacements if you use Honeywell media)

Vehicle mount computer: 1 year

Accessories: 90 days

2D Codes vs Stacked Linear Codes

Here are two barcode symbols that both encode the string “12345678”:

Which of these codes is a 2D code? The one on the right is Datamatrix code, a true two dimensional code. The one on the left is PDF417, a stacked linear code; it looks like a two dimensional barcode, but it isn’t.

2D codes store data in both the X and Y coordinates. Linear codes only contain data in one dimension. This is easy to see in a normal linear code.

It doesn’t matter where the scanner goes across the code, data is only encoded in the widths of the bars and spaces. Datamatrix characters are encoded in a matrix of 5 by 5 cells and have to be read by a camera.

Stacked linear codes are really a bunch of small linear barcodes stacked on top of one another. Each row has a row indicator or number, so a 1D scanner such as a laser is capable of reading these codes by sweeping across the code while the decoder keeps track of the row numbers and puts together the final output. Check the specs of your scanner, not all 1D scanners will read PDF417 symbols.

Other stacked symbologies besides PDF417 are Code 49, Code 16K,  and
GS1 Databar Stacked.

Note the size difference between the PDF417 and the Datamatrix symbol above. Not many new  applications use PDF417 because of the size and density advantage of Datamatrix.

Other 2D codes are Maxi Code, Aztec Code, and the ubiquitous QR Code.


Sherman, Set the Wayback machine to 1967

Sherman– 1967 Please.

This KarTrak railroad label is probably one of the oldest items in our collection.  The labels were hand-made by attaching strips of red, white and blue reflective material to a piece of 14 gauge sheet steel.  They were all 10 digits long.  Four digits identified the railroad and six identified the car. Each tag cost about $15 to make.

Our Kartrak Tag

The Automatic Car Identification (ACI) system was originally developed by GTE in 1961 and implemented by Dave Collins in 1967.  Dave later went on to form Computer Identics Corp. in Westwood and Canton, MA.

Original 1967 Ad for the Rail Scanning System.

The labels were read by moving beam scanners that were activated by a wheel sensor as the car moved by.  The scanner was mounted along the side of the track in a large metal NEMA enclosure with a hooded window.  It used a Xenon bulb and a four-sided spinning mirror along with a camera-like lens to read the tags.  The decoder used some circuitry to decode the red, white and blue channels from the signal that was reflected back from the tag.  If I remember correctly, the last time I saw one of these a PDP-11 series mini-computer ran the software system for the scanner.

The major problem with the system was dirt. When the labels got dirty they did not read well. The railroads would not clean them and this caused the system to be discontinued in 1974.

The last time I can recall these systems being used or seeing a label in public was in the Washington DC Metro system in the mid 1980’s. Computer Identics Corp. was still maintaining them at this time.

Fixing a print issue with Fingerprint programming

A large pharmaceutical company is using an ancient lab system that prints cryo labels for test tubes. They replaced Intermec 3400 printers that were almost 20 years old with new PC43T printers. The PC43T runs IPL (Intermec Print Language) and should have been a plug and play replacement. Unfortunately, some of the barcodes that printed on the 3400 no longer printed on the PC43T. The problem was caused by the different designs of the two printers. The PC43T’s labels are centered in the printer instead of all the way to the left (as you are facing the printer) on the 3400. Without getting into too much detail, their label format had to be modified to use the PC43T, but due to the age of the system this turned out to be impossible. The labels are .5 by 1.25 inches:

These are Code 128 barcodes printed with a 5 mil X (narrow bar) dimension.

We wrote a Fingerprint program that ran in the PC43T that intercepted data coming from the host, reformatted it into Direct Protocol (which has a center justify feature) and printed the label. Problem solved.